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Overview

1. Describe model class and algorithm

2. Contrast with literature

3. Discuss performance, flexibility, and accuracy

4. Krusell-Smith benchmark
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Model Class

• Discrete time. Het. atomistic agents. Beginning of period aggregate state:

Γ ≡ ( Λ︸︷︷︸
Household state distribution

, S︸︷︷︸
Other aggregate state variables

).

• Timing within period:

1. Beginning of period: Household with state x ∈ X has value V start(x; Γ)

2. End of (household) period: Households have value V end(x; Γ) and distribution Λend

3. Aggregate shock: Γ′ = Ω
(
Γ,Λend, ε

)
, with ε ∼ Cat({pi})

• Key assumption: V start|Γ : X → R is a function of V end|Γ : X → R and prices1

1“prices” ≡ some set of equilibrium values
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Data Representation

Fix some Γ ≡ ( Λ︸︷︷︸
Household state distribution

, S︸︷︷︸
Other aggregate state variables

)

• Represent V start|Γ, Λstart|Γ by data arrays AV start
Γ , AΛstart

Γ . Similarly, AV end
Γ , AΛend

Γ .

• Define the Intra-Period Problem function mapping V backward and Λ forward:

IPP :
(
AV end

Γ , AΛstart
Γ , SΓ

)
7→

(
AV start

Γ , AΛend
Γ

)
• IPP can typically be implemented conventionally (no neural net)

• To truly solve a model, the Hard Part is knowing AV end
Γ

• Strategy: Train a neural net N (Γ; θ) to approximate AV end
Γ

• N uses “generalized moments” of Han et al. (2024)
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Algorithm for Continuation Value Neural Net (One-Period Lookahead)

1. Guess neural net parameters θ0

2. For each epoch i ∈ {1, . . . , I}, simulate the model given N ( · ; θi), then update N :

2.1 Initialize state Γi0 ≡
(
AΛstart

i0 , Si0

)
2.2 For each period t ∈ {1, . . . , T}:

2.2.1 Approximate end-of-period value array AV end
it ← N (Γit ; θi)

2.2.2 Compute
(
AV start

it , AΛend
it

)
← IPP

(
AV end

it , AΛstart
it , Sit

)
2.2.3 Draw εit ∼ Cat({pi})
2.2.4 Iterate state Γi,t+1 ← Ω

(
AΛend

it ,Γit, εit
)

2.3 Update θi → θi+1 with cost function, for sample periods Ti ⊆ {1, . . . , T}:

1

|Ti|
∑
t∈Ti

∣∣∣∣∣AV end
it − 1

K

K∑
k=1

pkÂV start
i,t+1 (Γit, θi | εit = k)

∣∣∣∣∣
2

Details
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Key choices (within HA model solutions w/ aggregate shocks)

• Time:

• Discrete

• Continuous: Gu et al. (2024), Fernández-Villaverde et al. (2023), etc.

• Solution scope

• Global: Most DL based methods

• Local: Most projection/perturbation methods: Bhandari et al. (2023), Bilal (2023),

Auclert et al. (2021), Winberry (2018), etc.

• Policy function

• Conventional: Krusell and Smith (1998), Hull (2015), etc.

• Deep Learning: Han et al. (2024), Azinovic et al. (2022), Maliar et al. (2021), etc.

• Household simulation (all compatible with continuation value strategy):

• Discrete State: Gu et al. (2024) do both, Kaplan et al. (2020)

• Finite Agent: Krusell and Smith (1998), Han et al. (2024), etc.

• Personal preference: Gridded CDF: fast, deterministic, less biased than point-mass
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Classification

• Krusell-Smith/Hull with NN V and generalized moments

• Q-learning with equilibrium

• Approximate Dynamic Programming with Post-Decision States (ADP-POST)

(Powell, 2007) with deep learning and equilibrium
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Flexibility

Key advantage: No need to train a policy function approximator, often the hardest part

• Only need to implement

IPP :
(
AV end

Γ , AΛstart
Γ , SΓ

)
→

(
AV,start

Γ , AΛend
Γ

)
• Can typically be done conventionally. Immediately correct as a function of AΛ,end

Γ

I provide code to modularly implement IPP for household problems featuring:

• Consumption-saving decisions

• Idiosyncratic income shocks

• Binding borrowing constraints

• Multiple assets

• Multiple locations and frictional migration

• Real estate markets

• All of the above simultaneously 8
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Performance

IPP :
(
AV,end

Γ , AΛ,start
Γ , SΓ

)
→

(
AV,start

Γ , AΛ,end
Γ

)

• IPP function is inner loop of algorithm: costly need for many simulations

• IPP represents the bottleneck, but also the target for optimization

• The available code for building IPP functions is highly optimized and reusable

• Ideally, one person can contribute a new IPP module (or “stage”), many can use

• Cannot handle high-dimensional individual state
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Accuracy

Suppose IPP is implemented:

IPP :
(
AV,end

Γ , AΛ,start
Γ , SΓ

)
7→

(
AV,start

Γ , AΛ,end
Γ

)
.

• Immediately correct as a function of AΛ,end
Γ . Only V needs to be trained

• Formally, IPP represents the solution to a one-period model where AΛ,end
Γ represents

terminal payoffs

• If prices cannot be solved analytically, two options:

1. Solve by inner loop around each IPP (slow but accurate)

2. Introduce new price approximator neural net à la Azinovic et al. (2022)
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Model Setup

• Standard Krusell-Smith Model Details

• 65 wealth gridpoints, 3 income gridpoints = 195 idiosyncratic gridpoints

• Identical simulate-update V loop, except V can either be parameterized as:

1. Neural network Details

2. Interpolation over k-l-K-A grid Details

• Error function:

1

|Ti|
∑
t∈Ti

∣∣∣∣∣AV end
it − 1

K

K∑
k=1

pkÂV start
i,t+1 (Γit, θi | εit = k)

∣∣∣∣∣
2

• Report: V error as share of var(V ) across population

• Hardware: One laptop CPU thread (i9-13900H)
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Learning Curve Comparison

V error as share of V variance by training epoch V error as share of V variance by training time

• Both stop improving within about 300 epochs (122s for NN, 13s for KS)

• After Epoch 300, mean log10 error is −4.431 for NN, −3.152 for KS

TODO: Interpretation

TODO: Finite state Benefits: deterministic Cons: moments can be miscomputed? But this

is actually a problem with computing statistics incorrectly
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Conclusion

• Describe a solution method for HA models with agg. shocks that overcomes curse of

dimensionality (of aggregate state)

• Method uses neural nets only where needed – solution otherwise conventional

• Much complexity is offloaded to Intra-Period Problem (IPP) function

• In other work, provide tools to implement IPP flexibly, easily, performantly
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Discussion

• Key advantages:

• Complex household problems supported

• No need to train policy network

• Disadvantages:

• Individual state must be low-dimensional (≤ 6 or so)

• Prices require inner loop around IPP or price neural net à la Azinovic et al. (2022)

• Future work:

• Train to tighter tolerance

• Assess other error metrics, e.g. Euler equation error

• Compare economics of solutions
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Algorithm Details

• I use a gridded CDF representation of Λ, but using a finite number of agents is also

possible. However, they have to interpolate over continuation V

• Training data for each simulated period is AV end
it together with

E
[
AV,start

i,t+1 | Γit

]
=

1

K

K∑
k=1

IPPV

(
N (Ω(Γit, k) ; θi), A

Λend
it ,Ω(Γit, k)

)
• For large models, if memory is constrained, you can update θi as you go, accumulating

gradients but not storing the entire simulation

Back



Neural Network Implementation

Neural net N
(
AΛstart

Γ ; θ
)
has following components:

1. Generalized-moment of Han et al. (2023):

GMΓ =
∑
j∈J

(
AΛstart

Γ

)
j
NGM(Xj)

2. One layer (1 ⇒ 10) neural net on aggregate productivity A

3. Dense feedforward neural net on input: (Xj ,GMΓ,NA(A))

• Three hidden layers with 8, 8, and 5 neurons

• Elu activation

Back



Krusell-Smith Model Details

• 65 wealth gridpoints

• 3 income gridpoints

• β = 0.98

• Income process by Tauchen discretization with persistence 0.95 and std 0.1

• Log-linear wealth grid from 1k to 10m

• Income states: 15.4k, 40.3k, 105.4k

• Risk aversion: 0.9

• Capital share: 0.36

• Depreciation rate: 0.025
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Krusell-Smith Method Details

• 5 aggregate capital gridpoints: 100k, 150k, 200k, 250k, 300k

• Linear extrapolation outside aggregate capital grid

• 2 aggregate productivity states: 0.5 and 1.0

• Unlike Krusell and Smith (1998), use gridded CDF population distribution

representation for cleaner comparison
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