Research Question

One Way to Pick a Climate Econ Research Question Adapted from the first lecture of ECO481: Climate Economics

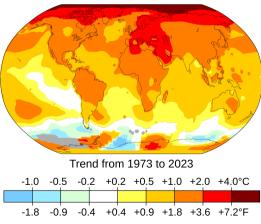
(Comments welcome! je.sun@utoronto.ca)

Jeffrey Sun

September 12, 2024

Climate Economics 0000000000	$\begin{array}{c} \text{Method} \\ \text{000000} \end{array}$	Results 0000

ECO 481 Course Overview

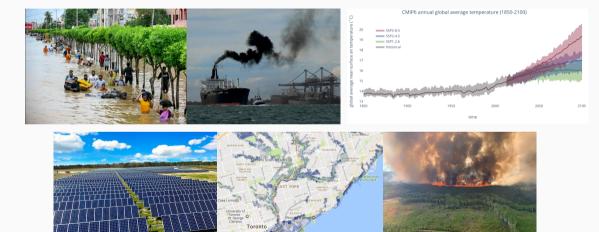

- What is the unique contribution of economists to climate research?
- This course's focus: Application of certain "structural modeling" methods to economic climate questions
- Focus on economic **substitution** and **equilibrium**, to study everything from flooding impacts to effectiveness of solar subsidies
- Focus on concrete "micro" questions
- This whole course: a gentle model of real graduate-level research
 - Very restricted in methods and tools
 - Enough to write a serious research paper

Climate Economics

Results 0000

Climate Change

Temperature change over the past 50 years



- Climate change is a huge phenomenon
- Driven by the interaction of emissions with complex natural systems
- Impacting almost every aspect of human life, now and in the future
- Where to even start?
- 1. Narrow down the topic
- 2. Narrow down the question
- 3. Narrow down the method

Research Question 000000

Method 000000 Results 0000

The Overwhelming Complexity of Climate Change

Climate Economics 0000000000	Method 000000	$\begin{array}{c} \operatorname{Results} \\ \operatorname{OOOO} \end{array}$

Climate Research

 $\begin{array}{l} \text{Humans} \longrightarrow \text{Climate} \\ \text{Humans} \longleftarrow \text{Climate} \end{array}$

Climate Economics	Method	Results
0000000000	000000	0000

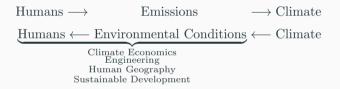
Climate Research

 $\begin{array}{ccc} \text{Humans} & \longrightarrow & \text{Emissions} & \longrightarrow & \text{Climate} \\ \text{Humans} & \longleftarrow & \text{Environmental Conditions} & \longleftarrow & \text{Climate} \end{array}$

Research Question 000000

Method 000000 Results 0000

Climate Science (Is Not Climate Economics)


Climate Economics	Method	Results
00000000000	000000	0000

Climate Economics

 $\begin{array}{ccc} \text{Humans} & \longrightarrow & \text{Emissions} & \longrightarrow & \text{Climate} \\ \\ \underbrace{\text{Humans} \leftarrow & \text{Environmental Conditions}}_{\text{Engineering}} \leftarrow & \text{Climate} \\ \\ \hline & & \\ &$

Climate Economics 000000000000	Method 000000	$\begin{array}{c} \operatorname{Results} \\ \operatorname{OOOO} \end{array}$

Climate Economics

How do economic forces shape:

- Emissions
- The impact of climate change on humans
- The impact of *policy* on emissions and impacts

The Equilibrium Perspective

- How will people adopt solar panels in the future?
- How much would a carbon tax reduce emissions?
- Who would benefit/lose from a flood insurance subsidy?

Remember:

- Economic outcomes always arise in **equilibrium**
- Policy/shocks do not *directly* determine outcomes, only shift the equilibrium.

"Structural Micro" Climate Economics Within Economics

- All academic research comes out of "research communities," made up of people
- Each community has its own subject matter, but also its own methods, norms, and epistemologies (ideas about what constitutes knowledge)
- What is the context of the approach I take in my class?

"Structural Micro" Climate Economics Within Economics

- Climate *macro* tends to incorporate how climate drivers *interact* with climate impacts, e.g. through growth
- We focus on the *micro* level, where we can use data and theory to provide concrete answers to concrete questions
- "Reduced-form" climate/environmental/resource economics tends to focus on measuring specific responses: e.g. how much does a solar subsidy increase adoption?
- We take a more "structural" perspective, using some simple theory and modelling to interpret, understand, and predict responses
- Draw from macro, trade, industrial organization, urban, etc. An attempt to bring many tools together, rather than an established community

Research Question

Our Type of Question

- Our only question: How will X shift the equilibrium?
- If something changes, something is causing that change.
- If it is government action, we call it "policy".
- Anything else (e.g. tech, climate change, public opinion) we call a "shock."
- Policy targeting emissions we call "mitigation policy."
- Policy targeting impacts we call "adaptation policy."

Examples:

- How would allowing Chinese EVs affect emissions?
- How do EV charging station subsidies affect emissions?
- Which products would be made more expensive by a carbon tax?

Climate Economics 00000000000	Research Question 000000	$\substack{\text{Method}\\000000}$	Results 0000

Mitigation

- How much will emissions be reduced by solar adoption?
 - How much would a solar subsidy help?
 - What would happen to electricity prices and quantities?
 - How much would a breakthrough storage technology help?
- Carbon capture? Methane leakage standards? International cooperation?

Climate Economics	Research Question 0000000	Method	Results
00000000000		000000	0000
			i P

Adaptation

- How will global warming affect crop yields?
 - What if farmers can choose which crops to grow?
 - How will this affect crop prices and food security?
- How will flooding affect welfare?
 - Will flood insurance subsidies hurt or help?
 - How unequal will these impacts be?

A Menu of Questions: Mitigation (Emissions-Targeting Policies)

"How would policy/shock X affect emissions from Y, in equilibrium, when people have choices Z?"

"How would it affect welfare, inequality, and other outcomes?"

- Sources: Manufacturing, energy, transportation, land use...
- Possible Shocks: Technology, policy, consumption decisions...
- Mitigation Policy: Taxes, subsidies, regulations...

A Menu of Questions: Adaptation (Climate Impacts-Targeting Policies)

"How would climate-driven environmental change X affect outcomes Y, in equilibrium, when people have choices Z?"

"How would this be different under policy/shock W?"

"How would this affect welfare, inequality, and other outcomes?"

- Physical Changes: Heat, flooding, fire, sea levels, weather...
- "Direct" Impacts: Agriculture, health, mortality, industry, trade, housing...
- Adaptation: AC, acclimatization, irrigation, migration, capital reallocation, construction, infrastructure...
- Equilibrium Responses: Populations, prices, land use, crop choice, violence, quality-of-life, everything in "direct impacts"...
- Considerations: Welfare, inequality, impacts of policy...

Climate Economics 00000000000	$\begin{array}{c} \text{Method} \\ 0 \bullet 0 0 0 0 \end{array}$	

Example: A Hot Dog

Suppose the carbon footprint of a hot dog is 5 kg of CO_2 . My friend is about to buy a hot dog, but I tell her this and she decides not to. How much did I reduce emissions by?¹ (Ignore considerations like, "One hot dog is too small to make a difference." Think about the average effect of a million people making the same decision.)

¹Inspired by 2024 conference presentation at IPWSD by Celia Escribe (coauthored with Philippe Quirion).

Climate Economics	Method	Results
00000000000	00●000	0000
Example: A Hamburger		

Suppose the carbon footprint of a hot dog is 5 kg of CO_2 . My friend is about to buy a hot dog, but I tell her this and she decides not to. How much did I reduce emissions by?

- If she buys a hamburger instead (10kg CO₂), negative! (Substitution)
- In equilibrium, if many people buy less beef, the price of beef will fall. Others may eat more beef, but farmers may produce less beef.
- How much will the overall quantity of beef change by? (Equilibrium.)

How can we account for substitution and equilibrium in our analysis?

• We will cover and use some simple tools. This will tell us something, but still not the whole story!

Climate Economics 00000000000	Method 000●00	

The Structural Approach

- Measure/estimate what we can (e.g. elasticity of substitution between beef and other things, relative carbon footprints, supply elasticity of beef)
- Hypothesize about how those measurements/estimates translate to predictions (under what conditions, at what time scales, etc.)
- This requires a **model**.
- We decide which features to *incorporate* and which features to *omit*.

Narrow Methodology, Broad Questions

- We focus on the role of **substitution** and **equilibrium** in shaping the drivers and impacts of climate change
- Introduce simple, general tools for dealing with these considerations
- Extra credit: Do one extension after completing the main assignment

Climate Economics	Method	Results
00000000000	00000●	0000

Other Considerations

We will focus on substitution and equilibrium. Other interesting considerations include:

- Expectations
- Uncertainty
- Heterogeneity
- Partial Information and Learning
- Strategic Interaction
- Intertemporal Substitution and Dynamics
- Irrationality and "Behavioral Economics"
- Market Structure
- Financial Frictions
- Political Economy

Results

$\begin{array}{c} \text{Climate Economics} \\ \text{000000000000} \end{array}$	Method 000000	$\substack{\text{Results}\\ 0 \bullet 00}$

Anatomy of a Paper

By the end of the semester, you will

- 1. Motivate
- 2. Design
- 3. Code
- 4. Estimate using data
- 5. Solve
- 6. Interpret

a simple model of a question of your choice.

Climate Economics 00000000000	Method 000000	$\begin{array}{c} \text{Results} \\ \text{OO} \bullet \text{O} \end{array}$

Anatomy of a Paper

- 1. Motivate: What is your research question?
- 2. Design: What considerations will you take into account? Which will you omit?
- 3. Code: Given a set of "fundamentals/parameters", what is the resulting equilibrium?
- 4. Estimate using data: Use variation in observed equilibria (e.g. prices and quantities) to infer the values of those parameters
 - What assumptions are you making in doing so?
- 5. Solve: How would the equilibrium differ under a policy/shock
- 6. Interpret: What does this exercise teach us? Under what conditions will your prediction be good or bad?