
Solving Dynamic Economic Models By
Decomposition

Jeffrey Sun

July 5, 2024

Click here for current version.

Abstract
I describe a specific way in which many dynamic economic models

can be decomposed into a “within-period model” and a “between-period
model.” I then describe a sense in which these two parts can be solved
separately. That is, a solver for the overall model can be constructed by
combining a “within-period model solver” and a “between-period model
solver.” This document does not attempt to introduce new solution algo-
rithms per se. Indeed, it tries to nest many existing algorithms. This doc-
ument is an exercise in splitting the complex “model solver” into smaller,
more manageable parts—to facilitate model solving, transparency, code
reuse, standardization, and the application to economic models of tools
from computer science and machine learning.

1 What is this document?
This whole document is an attempt to formalize a certain numerical solution
strategy for dynamic heterogeneous-agent models which I have found to be quite
robust and useful. It involves, roughly:

• Splitting the model into a “within-period model” and a “between-period
model,” in a way which I will make precise.

• Solving the within-period model.

• Separately solving the between-period model.

In addition to being a formal definition of this “process” or “strategy” or “class
of model solvers,” I am endeavoring to make this definition constructive, in
the sense that you should be able to actually numerically solve your desired
model by following the construction process. I am also building up a library
of components which you can hopefully use to build up this solver quickly and
robustly.

In the next few sections, I will describe through examples each of the key
elements of a “solved model”:

1

https://www.jeffreyesun.com/solving_models_by_decomposition.pdf

1. The Within-Period Model

2. The Between-Period Model

3. The Overall Objective Function

4. The Within-Period Model Solver

5. The Between-Period Model Solver

(I also discuss the notion of the “True Model”, which the computable model is
approximating, in Section 7.)

The reason why I break the model solver up in this way is because each
component can be solved separately. That is, you can use this strategy to break
the problem up into simple, understandable pieces, implement each piece (or
take it off the shelf), then combine them to get a full model solver.

1.1 Terminology
Throughout, I use “solution” to refer to the specific numerical solution to a
model, and “solver” to refer to the algorithm which finds that solution.

1.2 Caveat
Some ideas expressed here are novel and unusual. Some are old and some are
basically trivial. Unfortunately, I don’t always know which is which. I will
continue to update this document to add appropriate attributions and as it
becomes clearer to me how the ideas here fit in to the broader literature.

2 The Within-Period Model
A “within-period model” is a sort of one-period model, out of which complex
dynamic models can be built. I will describe how in later sections.

For now, consider a one-period model in which some distribution of agents
enter the model at the beginning of the period, then receive payoffs at the end
of the period. Formally, let Xstart denote the space of idiosyncratic states at
the beginning of the period and Xend denote the space of idiosyncratic states at
the end of the period. For simplicity, suppose that Xstart is discrete. Then let

Λstart : Xstart −→ R

denote the start-of-period population distribution, and

V end : Xend −→ R

denote the end-of-period payoffs. Finally, let Sstart ∈ R|S| be a vector of ex-
ogenous aggregate state variables. Then a “within-period model solver” is a
function, for now called IPP for “intra-period problem,”

IPP :
(
V end,Λstart, Sstart) 7→ (

V start,Λend, Send) .
2

This IPP function might also be called an operator. It is a function which
takes functions as inputs and gives functions as outputs. It is the operator taking
the end-of-period value function and start-of-period state to the start-of-period
value function and the end-of-period state.

This type of “within-period model” will form the computational core of a
dynamic model. To explain the strategy, please assume for now that such an
IPP function exists. Constructing the IPP function is what I refer to as “solving
the within-period model,” and I address it in Section 5.

3 Between-Period Model
The “within-period model” described in Section 2 is not terribly useful yet. What
does it tell us about equilibrium? Dynamics? Calibration? I show that all of
these problems can be formulated as the problem of solving a “between-period
model” takes takes a “within-period model” as an input.

The first issue is that sometimes we don’t want to take V end, Λstart, and
Sstart for granted, but instead solve for them somehow. The key to all of this is
that many complex models can be thought of as simply representing different
notions of “solving for” V end, Λstart, and Sstart. That is, as the solution to a
system of equations,

H
({

V end
m

}
m
,
{
Λstart
m

}
m
,
{
Sstart
m

}
m
, IPP

)
= 0,

where {Λstart
m }m is a vector of different starting populations Λstart

m , and similarly
for

{
V end
m

}
m

and {Sstart
m }m. The following examples can hopefully illustrate this

idea.

3.1 Example: Stationary Steady State
The notion of a stationary steady state can be constructed as,

V end = βV start

Λstart = Λend

Sstart = Send(
V start,Λend, Send) = IPP

(
V end,Λstart, Sstart)

Formally, you can construct H as some vector-valued function

H
(
V end,Λstart, Sstart) = (

V start − V end,Λstart − Λend, Sstart − Send)
where

(
V start,Λend, Send) = IPP

(
V end,Λstart, Sstart) .

But this is sort of an arbitrary encoding, and in general cannot always be com-
puted so simply, so for the remainider of this section I stick with just describing
the system of equations. In Section 4, I describe more generally how to “evalu-
ate” a candidate numerical solution to the between-period-problem.

3

3.2 Example: Two-Period Model
A two-period model, taking Λstart

1 , Sstart
1 , and V end

2 as given, can be constructed
as, (

V start
t ,Λend

t , Send
t

)
= IPP

(
V end
t ,Λstart

t , Sstart
t

)
∀t ∈ {1, 2}

V end
1 = βV start

2

Λstart
2 = Λend

1

Sstart
2 = Send

1 .

Note that, if a function IPPback exists, as in Section 2 but not depending on
Sstart, then a the two-period model can be solved in a loop-free fashion according
to the algorithm:

Algorithm 1 Standard Two-Period Model Solver

1. Take Λstart
1 , Sstart

1 , and V end
2 as given

2. V start
2 ←− IPPback (V end

2

)
3. V end

1 ←− V start
2

4. V start
2 ←− IPPback (V end

2

)
5. Λend

1 = IPP
(
V end
1 ,Λstart

1 , Sstart
1

)
2

6. Send
1 = IPP

(
V end
1 ,Λstart

1 , Sstart
1

)
3

7. Λend
2 = IPP

(
V end
2 ,Λstart

2 , Sstart
2

)
2

8. Send
2 = IPP

(
V end
2 ,Λstart

2 , Sstart
2

)
3

However, it is important to note that this is not the only way in which you
might solve a two-period model as described above. In fact, one of the main
things I’m trying to do is to separate the system of equations defining the model
and the particular solution algorithm or “solver.” The construction of the solver
will therefore be introduced separately in Section 6.

4

3.3 Example: Perfect-Foresight Transition
The notion of a perfect-foresight transition, taking the initial state Λstart

1 and
Sstart
1 as given, with exponential discounting at rate β, can be constructed as,

V end
t = βV start

t+1 ∀t ∈ N
Λstart
t+1 = Λend

t ∀t ∈ N
Sstart
t+1 = Send

t ∀t ∈ N(
V start
t ,Λend

t , Send
t

)
= IPP

(
V end
t ,Λstart

t , Sstart
t

)
∀t ∈ N.

Note that this defines an infinite number of equations, and thus is not com-
putable in practice. Thus, when we go to solve this system of equations, we will
have to construct an objective function that does not line up exactly with the
“true model.” In particular, the usual trick is to simulate forward T periods.
Formally, to define a sequence of models, {MT | T ∈ N}, with MT being defined
by

V end
t = βV start

t+1 ∀t ∈ {1, . . . , T − 1}
Λstart
t+1 = Λend

t ∀t ∈ {1, . . . , T − 1}
Sstart
t+1 = Send

t ∀t ∈ {1, . . . , T − 1}
V end
T = βV start

T

Λstart
T = Λend

T

Sstart
T = Send

T(
V start
t ,Λend

t , Send
t

)
= IPP

(
V end
t ,Λstart

t , Sstart
t

)
∀t ∈ {1, . . . , T} ,

together with an argument that the sequence of models MT converges, in some
sense, to the “true model.”

However, just as I am keen to distinguish between the system of equations
and its solution algorithm, I am keen to distinguish between the “true model”
and “approximate model.” This will be discussed more fully in Section 7.

In particular, the restriction to a small subset of the full set of equations in
the true model, as here, is in some sense a sampling procedure. These will become
crucial for solving large state space models, such as those with heterogeneous
agents and aggregate shocks. This is the reason why I take pains to distinguish
between the “true” set of equations defining the between-period model and the
numerical “objective function” used to evaluate a candidate numerical solution
in Section 4.

3.4 Example: Market Clearing
To construct market-clearing conditions, suppose that period-t prices, p, are
contained within Sstart and period-t excess demand quantities, q, are contained

5

within Send. Then, market clearing conditions can be constructed as,

q
(
Send) = 0(

V start,Λend, Send) = IPP
(
V end,Λstart, Sstart)

3.5 Example: Overlapping Generations
A stationary steady state with two overlapping generations can be constructed
in a couple ways. One is to just treat it as a two-period model, but that is a sort
of useful lie—there is just a single period, and setting it up in this way messes
up the strategies presented here for cleanly introducing new features such as
market clearing and dynamics. Instead, the more compatible formulation would
look involve introducing age-rollover operators AgeV and AgeΛ which apply the
“change of age” to V and Λ. That is, if the idiosyncratic state of each household
i consists of an age ai and other state variables xi, such that for any V and Λ

(AgeV V) (x, 1) = V (x, 2)

(AgeV V) (x, 2) = V bequest (x)

(AgeΛΛ) (x, 2) = Λ (x, 1)

(AgeΛΛ) (x, 1) = Λbirth (x)

where V bequest and Λbirth are some exogenous terminal utility and entry popu-
lation distribution, respectively. Then the model can be written,

V end = βAgeV V
start

Λstart = AgeΛΛ
end

Sstart = Send(
V start,Λend, Send) = IPP

(
V end,Λstart, Sstart)

3.6 Example: Search and Matching
A model with job search and matching can be constructed similarly to the model
with market clearing conditions described in Section 3.4, except that:

• In addition to prices (wages), the market tightness parameters are also
included in the state Sstart.

• In addition to excess demand, the job finding rates are also included in
the state Send.

Apologies that this example is a little light on details. I will work on expanding
it.

6

3.7 Example: Epstein-Zinn Preferences
A stationary steady state with Epstein-Zinn preferences can be defined by al-
lowing consumption c to persist as a state variable in Λ. Then the line in Section
3.1,

V end = βV start

is replaced with,

V end =
[
(1− β) c

(
V start)ρ + βµ

(
V start)ρ]1/ρ .

3.8 Example: Aggregate Uncertainty

3.9 Example: Calibration by Indirect Inference
Another intriguing example is that calibration by indirect inference can be com-
puted quite similarly to prices. In the case of a one-period model, suppose that
the parameters to be calibrated, θ, are included in Sstart, and the simulated
moments, Y , are included in Send. Let the data moments be Y0. Then the
problem becomes,

min
θ

c
(
Y
(
Send (θ)

)
, Y0

)
where

(
V start,Λend, Send (θ)

)
= IPP

(
V end,Λstart, Sstart (θ)

)
.

4 Overall Objective Function
In some cases, the between-period model might be characterized by a very large
or infinite number of equations. In this case, it is necessary to develop an
approximate objective function with which to evaluate the model.

4.1 Full Set of Defining Equations
In cases when the between-period model is characterized by a feasibly-small
number of equations, the objective function can simply be constructed as that
full set of equations, as in the H function in Section 3.1.

4.2 Finite-Horizon Approximations to Infinite-Horizon Tran-
sition Paths

4.3 Sampling Procedure as Objective Function: Monte
Carlo

5 Within-Period Model Solver
For the sake of many of the between-period model solvers described in Section 6,
it is often necessary to implement not only IPP, but also a backwards-iteration

7

function IPPback, such that,

For all V end,Λstart, Sstart,

If
(
V start,Λend, Send) = IPP

(
V end,Λstart, Sstart)

Then
(
V start, Sstart) = IPPback (V end, Sstart) .

Different authors have independently hit upon the idea of constructing such
functions through further decomposing the IPP functions into multiple sub-
period “stages” or “phases.” For example, mechanisms for constructing IPP
functions in this way appear in the ECON-ARK and SSJ toolkits. I describe my
particular formulation of this decomposition here, and am working on provided
some of the necessary code on my website.

It can also often be useful to differentiate through the IPP function. In
particular, this allows us to use gradient-based solvers. Automatic differentia-
tion can be a very powerful tool for differentiating through IPP. In the case
where the IPP function is implicitly defined, and internally implemented using
iterative methods, automatic differentiation can still be used with a little extra
setup, which I discuss here.

6 Between-Period Model Solver

6.1 Example: Two Period Model
I describe in Section 3.2 a simple algorithm for solving a two-period model.

6.2 Example: Brute Force Solver
In some sense, the “simplest” idea would be to “stack” all of the equations into a
single objective function, then just use a standalone nonlinear equation solver.
That is, assuming we haveimplemented the H function as in 3.1,

Algorithm 2 Brute Force Solver

1. Take the H and IPP functions as given

2. Guess
{
V end
m

}
m
, {Λstart

m }m, and {Sstart
m }m.

3. err ←− H
(
{Λstart

m }m ,
{
V end
m

}
m
, {Sstart

m }m , IPP
)

4. Use the nonlinear equation solver to obtain a new guess for
{Λstart

m }m ,
{
V end
m

}
m

, and {Sm}m, given err.

5. Return to Step 3.

8

https://www.jeffreyesun.com/CV_is_all_you_need.pdf
https://www.jeffreyesun.com
https://www.jeffreyesun.com/auto_implicit_diff.pdf

6.3 Example: Value Function and State Iteration
In the case of a stationary steady state model as in Section 3.1,

V end = βV start

Λstart = Λend

Sstart = Send(
V start,Λend, Send) = IPP

(
V end,Λstart, Sstart) ,

value function iteration and state iteration is often effective.

Algorithm 3 Value Function and State Iteration

1. Take V end, Λstart, and Sstart as given

2.
(
V start,Λend, Send

)
←− IPP

(
V end,Λstart, Sstart

)
3. V end ←− βV start

4. Λstart ←− Λend

5. Sstart ←− Send

6.4 Example: Tatonnement
In the case of a market clearing model as in Section 3.4,

q
(
Send) = 0(

V start,Λend, Send) = IPP
(
V end,Λstart, Sstart) ,

Tattonnement is often effective.

Algorithm 4 Tatonnement

1. Take V end and Λstart as given. Select some update rate α.

2. Guess prices p

3. Construct the state: Sstart ←− Sstart (p)

4.
(
V start,Λend, Send

)
←− IPP

(
V end,Λstart, Sstart

)
,

5. Extract excess demand: q ←− q
(
Send

)
6. Update prices: p←− p+ αq

7. Return to Step 3.

9

6.5 Example: Krusell-Smith

6.6 Example: Deep Approximate Dynamic Programming
I describe this in more depth in my slides herehere.

6.7 Example: Perturbation Around Perfect-Foresight Tran-
sition

7 True Model vs. Approximate Model
What does it mean for one model to approximate another? This can be for-
malized by thinking about a sequence of approximator models that converge to
a “true model.” That is, if M∞ is a model, and {Mk | k ∈ N} is a sequence of
models, then the models Mk are said to “approximate” M∞ if Mk →k→∞ M∞.
Note that this can only formally be understood by keeping track of the whole
sequence, for instance by parameterizing it.

7.1 Example: Idiosyncratic State Discretization

7.2 Example: Aggregate Shock Discretization

7.3 Example: Finite-Horizon Approximations to Infinite-
Horizon Transition Paths

7.4 Example: Time-Discretized Continuous-Time Models
It is sometimes remarked that when we transform a discrete time model to
continuous and then solve it on a computer, we are making the model discrete-
time again in order to solve it. This is an interesting insight and suggests to me
that some of the benefits of continuous-time methods can be realized without
touching the daunting machinery of SDEs.

I begin with the following observation. When we numerically solve a continuous-
time model, we are in effect:

1. Starting with a convergent sequence of less-tractable discrete-time models,
{Mk | k ∈ N}. For instance, with time step ∆t = k−1.

2. Finding a different sequence of more-tractable discrete-time models with
the same limit,

{
M̃k | k ∈ N

}
.

3. Solving one of the models M̃k in the second sequence.

What do I mean that the models M̃k are “more tractable” than the models Mk?
Some examples are the assumptions that, in M̃k,

1. Shock realizations are mutually exclusive within time steps. For instance,
the probability that the Calvo fairy visits twice within the same time step
ends up being dominated by the probability that it visits once.

10

https://www.jeffreyesun.com/CV_is_all_you_need_slides.pdf

2. Demand and supply in each time step depend on prices in the previous
period. (Possibly subject to some sort of renormalization.) That is, as the
time step gets small, the change in prices between time steps gets small so
that, in the limit, prices in each time step are well-approximated by prices
in the previous time step.

This gives me the interesting idea of avoiding some of the formalism of continuous-
time models by instead working directly with the sequences of Mk and M̃k, and
to solve M̃k, applying transparently discrete-time techniques.

11

	What is this document?
	Terminology
	Caveat

	The Within-Period Model
	Between-Period Model
	Example: Stationary Steady State
	Example: Two-Period Model
	Example: Perfect-Foresight Transition
	Example: Market Clearing
	Example: Overlapping Generations
	Example: Search and Matching
	Example: Epstein-Zinn Preferences
	Example: Aggregate Uncertainty
	Example: Calibration by Indirect Inference

	Overall Objective Function
	Full Set of Defining Equations
	Finite-Horizon Approximations to Infinite-Horizon Transition Paths
	Sampling Procedure as Objective Function: Monte Carlo

	Within-Period Model Solver
	Between-Period Model Solver
	Example: Two Period Model
	Example: Brute Force Solver
	Example: Value Function and State Iteration
	Example: Tatonnement
	Example: Krusell-Smith
	Example: Deep Approximate Dynamic Programming
	Example: Perturbation Around Perfect-Foresight Transition

	True Model vs. Approximate Model
	Example: Idiosyncratic State Discretization
	Example: Aggregate Shock Discretization
	Example: Finite-Horizon Approximations to Infinite-Horizon Transition Paths
	Example: Time-Discretized Continuous-Time Models

